3.3.32 \(\int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx\)

Optimal. Leaf size=116 \[ \frac {\sqrt {a e^2+c d^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d e}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e} \]

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {896, 266, 63, 208, 844, 217, 206, 725} \begin {gather*} \frac {\sqrt {a e^2+c d^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d e}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]])/e + (Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*
e^2]*Sqrt[a + c*x^2])])/(d*e) - (Sqrt[a]*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 896

Int[((a_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Dist[(c*d^2 + a*e^2)/
(e*(e*f - d*g)), Int[(a + c*x^2)^(p - 1)/(d + e*x), x], x] - Dist[1/(e*(e*f - d*g)), Int[(Simp[c*d*f + a*e*g -
 c*(e*f - d*g)*x, x]*(a + c*x^2)^(p - 1))/(f + g*x), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g,
0] && NeQ[c*d^2 + a*e^2, 0] && FractionQ[p] && GtQ[p, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+c x^2}}{x (d+e x)} \, dx &=-\frac {\int \frac {a e-c d x}{(d+e x) \sqrt {a+c x^2}} \, dx}{d}+\frac {a \int \frac {1}{x \sqrt {a+c x^2}} \, dx}{d}\\ &=\frac {a \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d}+\frac {c \int \frac {1}{\sqrt {a+c x^2}} \, dx}{e}-\left (\frac {c d}{e}+\frac {a e}{d}\right ) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx\\ &=\frac {a \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d}+\frac {c \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{e}-\left (-\frac {c d}{e}-\frac {a e}{d}\right ) \operatorname {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )\\ &=\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{e}+\frac {\sqrt {c d^2+a e^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{d e}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 113, normalized size = 0.97 \begin {gather*} \frac {\sqrt {a e^2+c d^2} \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )+\sqrt {c} d \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )-\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d e} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(Sqrt[c]*d*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] + Sqrt[c*d^2 + a*e^2]*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^
2]*Sqrt[a + c*x^2])] - Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/(d*e)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.40, size = 181, normalized size = 1.56 \begin {gather*} -\frac {2 \sqrt {-a e^2-c d^2} \tan ^{-1}\left (-\frac {e \sqrt {a+c x^2}}{\sqrt {-a e^2-c d^2}}+\frac {\sqrt {c} e x}{\sqrt {-a e^2-c d^2}}+\frac {\sqrt {c} d}{\sqrt {-a e^2-c d^2}}\right )}{d e}+\frac {2 \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d}-\frac {\sqrt {c} \log \left (\sqrt {a+c x^2}-\sqrt {c} x\right )}{e} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + c*x^2]/(x*(d + e*x)),x]

[Out]

(-2*Sqrt[-(c*d^2) - a*e^2]*ArcTan[(Sqrt[c]*d)/Sqrt[-(c*d^2) - a*e^2] + (Sqrt[c]*e*x)/Sqrt[-(c*d^2) - a*e^2] -
(e*Sqrt[a + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/(d*e) + (2*Sqrt[a]*ArcTanh[(Sqrt[c]*x)/Sqrt[a] - Sqrt[a + c*x^2]/
Sqrt[a]])/d - (Sqrt[c]*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2]])/e

________________________________________________________________________________________

fricas [A]  time = 1.15, size = 1316, normalized size = 11.34

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="fricas")

[Out]

[1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sq
rt(a) + 2*a)/x^2) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2
*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c)*d*arct
an(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - sqrt(c*d^2 +
a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e
)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*
x - a) + sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c
*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -1/2*(2*sqr
t(-c)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - sqrt(a)*e*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) - 2
*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2
+ a*c*e^2)*x^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*log(-2*c*x^2 - 2*sqrt(
c*x^2 + a)*sqrt(c)*x - a) + sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)
*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), -1/2*(2*sqrt(-c
)*d*arctan(sqrt(-c)*x/sqrt(c*x^2 + a)) - 2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(c*d^2 + a*e^2)*l
og((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c
*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)))/(d*e), 1/2*(2*sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + sqrt(c)*d*l
og(-2*c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(c)*x - a) + 2*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a
*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e), -(sqrt(-c)*d*arctan(sqrt(-c)*x/sqrt
(c*x^2 + a)) - sqrt(-a)*e*arctan(sqrt(-a)/sqrt(c*x^2 + a)) - sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*
(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)))/(d*e)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 420, normalized size = 3.62 \begin {gather*} \frac {a \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, d}+\frac {c d \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, e^{2}}-\frac {\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {c \,x^{2}+a}\, \sqrt {a}}{x}\right )}{d}+\frac {\sqrt {c}\, \ln \left (\frac {-\frac {c d}{e}+\left (x +\frac {d}{e}\right ) c}{\sqrt {c}}+\sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\right )}{e}+\frac {\sqrt {c \,x^{2}+a}}{d}-\frac {\sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/x/(e*x+d),x)

[Out]

-1/d*a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x)+1/d*(c*x^2+a)^(1/2)-1/d*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^
2+c*d^2)/e^2)^(1/2)+c^(1/2)/e*ln((-c*d/e+(x+d/e)*c)/c^(1/2)+(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(
1/2))+1/d/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(
x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))*a+d/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c
*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(
x+d/e))*c

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 103, normalized size = 0.89 \begin {gather*} \frac {e {\left (\frac {\sqrt {c} d \operatorname {arsinh}\left (\frac {c x}{\sqrt {a c}}\right )}{e^{2}} - \frac {\sqrt {a + \frac {c d^{2}}{e^{2}}} \operatorname {arsinh}\left (\frac {2 \, c d x}{\sqrt {a c} {\left | 2 \, e x + 2 \, d \right |}} - \frac {2 \, a e}{\sqrt {a c} {\left | 2 \, e x + 2 \, d \right |}}\right )}{e} - \frac {\sqrt {a} \operatorname {arsinh}\left (\frac {a}{\sqrt {a c} {\left | x \right |}}\right )}{e}\right )}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x/(e*x+d),x, algorithm="maxima")

[Out]

e*(sqrt(c)*d*arcsinh(c*x/sqrt(a*c))/e^2 - sqrt(a + c*d^2/e^2)*arcsinh(2*c*d*x/(sqrt(a*c)*abs(2*e*x + 2*d)) - 2
*a*e/(sqrt(a*c)*abs(2*e*x + 2*d)))/e - sqrt(a)*arcsinh(a/(sqrt(a*c)*abs(x)))/e)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c\,x^2+a}}{x\,\left (d+e\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^(1/2)/(x*(d + e*x)),x)

[Out]

int((a + c*x^2)^(1/2)/(x*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + c x^{2}}}{x \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/x/(e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x*(d + e*x)), x)

________________________________________________________________________________________